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ABSTRACT. The concept of domination in graph theory has been widely
studied due to its applications in network theory, social sciences, and opti-
mization problems. In recent years, this concept has been extended to fuzzy
graphs, where uncertainty and partial membership are incorporated into
the structure of vertices and edges. In this paper, the inverse domination
in fuzzy graphs using strong arcs is introduced. The strong inverse dom-
ination number of classes of fuzzy graphs, such as complete fuzzy graphs,
complete bipartite fuzzy graphs, and fuzzy cycles, is determined. A rela-
tion is established between the strong inverse domination number and the
strong independence number. Finally, the practical importance of the new
concept of inverse domination in fuzzy graphs is nicely presented through
a real-life example.
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1. INTRODUCTION

Graph theory provides powerful tools for modeling relationships and interactions
in a wide range of real-world systems, including communication networks, biological
systems, and social structures. Among its many concepts, domination plays a central
role, particularly in applications like resource allocation, monitoring, and control
systems. Traditionally, a dominating set ensures that every vertex in the graph is
either in the set or adjacent to a vertex in the set. This has led to the development
of several extensionsone of which is the concept of inverse domination, where the
focus is on finding largest minimal dominating sets.

Parallelly, fuzzy graph theory, introduced by Rosenfeld (1975), enhances classical
graph models by incorporating uncertainty and partial relationships. In a fuzzy
graph, both vertices and edges are associated with membership values between 0
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and 1, allowing for a more realistic representation of systems where relationships are
not strictly binary. This modeling approach is especially valuable in uncertain or
imprecise environments, such as social networks or decision-making systems.

Despite the growing body of work on domination in crisp and fuzzy settings, the
inverse domination problem in fuzzy graphs remains largely unexplored. Most ex-
isting studies focus on classical (crisp) graphs or consider only standard domination
in fuzzy graphs, without addressing inverse domination or incorporating structural
measures like strong arcs, which quantify directional influence or strength more
meaningfully.

This paper aims to introduce and investigate inverse domination in fuzzy graphs
using strong arcsa refined concept that allows better modeling of influence strength
between vertices. We define new terms, establish key properties, and provide struc-
tural results that extend existing domination theories into the fuzzy domain.

The novelty of this work lies in combining the concept of inverse domination with
strong arc-based fuzzy graphs, creating a new framework that captures both domina-
tion structure and the graded strength of influence. This opens up new possibilities
for applications in uncertain systems, including fault-tolerant networks, ambiguous
decision-making environments, and influence modeling in social media platforms.
Several researchers have investigated domination-related concepts in fuzzy graphs.
Among them, Muhammad Akram and his research group have made significant con-
tributions to the development of fuzzy domination theory. Their work includes the
study of fuzzy dominating sets, independent dominating sets, and domination pa-
rameters in intuitionistic and bipolar fuzzy graphs. In particular, Akram et al. have
extensively explored structural properties, algorithmic strategies, and applications
of these domination parameters in uncertain environments [1, 2]. However, while
their studies lay a strong foundation for fuzzy domination, the concept of inverse
dominationespecially using strong arcshas not been explored in their framework.
This paper builds on the foundational principles of fuzzy graph theory established
by Akram and his collaborators but introduces a novel approach by defining and
analyzing inverse domination in terms of strong arcs, thereby extending existing
domination frameworks in a new direction.

2. PRELIMINARIES

We summarize briefly some basic definitions in fuzzy graphs which are presented
lIl [ k) ) ) ) Y ) b ]‘

A fuzzy graphis denoted by G : (V, 0, 1), where V is a node set, o is a fuzzy subset
of V and p is a fuzzy relation on o. i.e., p(z,y) < o(x) Ao(y) for all z,y € V. We
call o the fuzzy node set of G and p the fuzzy arc set of G, respectively. We consider
fuzzy graph G with no loops and assume that V' is finite and nonempty, p is reflexive
(i.e.,u(z,z) = o(x), for all ) and symmetric (i.e., u(x,y) = u(y,x), for all (z,y)). In
all the examples o is chosen suitably. Also, we denote the underlying crisp graph by
G*: (o*,u*) where 0* = {u € V : o(u) > 0} and p* = {(u,v) € VXV : p(u,v) > 0}.
Throughout we assume that o* = V. The fuzzy graph H : (7,v) is said to be a partial
fuzzy subgraph of G : (o,pu), if v C pand 7 C 0. In particular, we call H : (1,v),
a fuzzy subgraph of G : (o, ), if 7(u) = o(u) for all u € 7 and v(u,v) = p(u,v)
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for all (u,v) € v*. We say that a fuzzy subgraph H : (1,v) spans the fuzzy graph
G : (V,o,u), if 7 = 0. The fuzzy graph H : (P,7,v) is called an induced fuzzy
subgraph of G : (V, o, 1) induced by P, if P CV and 7(u) = o(u) for all u € P and
v(u,v) = p(u,v) for all u,v € P. We shall use the notation < P > to denote the
fuzzy subgraph induced by P. G : (V, o, ) is called trivial, if |o*| = 1.

In a fuzzy graph G : (V,o,pn), a path P of length n is a sequence of distinct
nodes wug, U1, - , Uy such that p(u;—1,u;) > 0,i = 1,2,--- ;n and the degree of
membership of a weakest arc is defined as its strength. If ug = u, and n > 3
then P is called a cycle and P is called a fuzzy cycle, if it contains more than one
weakest arc. The strength of a cycle is the strength of the weakest arc in it. The
strength of connectedness between two nodes x and y is defined as the maximum of
the strengths of all paths between z and y and is denoted by CON N¢g(z, y).

A fuzzy graph G : (o, u) is connected, if for every z,y in o*, CONNg(x,y) > 0.

An arc (u,v) of a fuzzy graph is called an effective arc (M-strong arc), if p(u,v) =
o(u) Ao(v). Then u and v are called effective neighbors. The set of all effective
neighbors of u is called effective neighborhood of u and is denoted by EN (u).

A fuzzy graph G is said to be complete, if p(u,v) = o(u) A o(v), for all u,v € o*
and is denoted by K, .

The order p and size q of a fuzzy graph G : (o, 1) are defined to be:

p=>Y o(@)andg= Y  plx,y).

zeV (z,y)eV XV

Let G : (V,0,u) be a fuzzy graph and S C V. Then the scalar cardinality of
S is defined to be ) .go(v) and it is denoted by [S|. Let p denotes the scalar
cardinality of V, also called the order of G.

An arc of a fuzzy graph is called strong, if its weight is at least as great as
the strength of connectedness of its end nodes when it is deleted. Depending on
CONNg(z,y) of an arc (z,y) in a fuzzy graph G, Mathew and Sunitha [10] defined
three different types of arcs. Note that CONNg_(, . (2,y) is the the strength of
connectedness between z and y in the fuzzy graph obtained from G by deleting the
arc (z,y). An arc (x,y) in G is a-strong, if u(z,y) > CONNgG_(34)(z,y). An arc
(z,y) in G is B-strong, if p(z,y) = CONNG_(z 4 (z,y). An arc (z,y) in G is J-arc,
if p(z,y) < CONNG_(3,4)(z,y). Thus an arc (z,y)is a strong arc, if it is either
a-strong or (-strong. A path P is called a strong path, if P contains only strong
arcs.

A fuzzy graph G is said to be bipartite [9] if the node set V' can be partitioned into
two non empty sets V; and Vi such that p(vi,ve) = 0 if v1,v0 € V4 or vy,v9 € Va.
Further if p(u,v) = o(u) Ao(v) for all u € V4 and v € Vo, then G is called a
complete bipartite graph and is denoted by K, »,, where o1 and oy are respectively
the restrictions of o to Vi and V5.

A connected fuzzy graph G = (V,o,pu) is called a fuzzy tree, if it has a fuzzy
spanning subgraph F : (o, v), which is a tree [spanning tree|, where for all arcs (z, y)
not in F' there exists a path from x to y in F' whose strength is more than p(z,y)
[8]. Note that here F is a tree which contains all nodes of G and hence is a spanning
tree of G.
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A mazimum spanning tree of a connected fuzzy graph G : (V,o,u) is a fuzzy
spanning subgraph T : (o,v) such that 7' is a tree, and for which >°, _ v(u,v) is
maximum. A node which is not an endnode of T is called an internal node of T' [6].
A node u is said to be isolated, if p(u,v) =0 for all v # w.

3. STRONG INVERSE DOMINATION IN FUZZY GRAPHS

Graph theory is a powerful tool for modeling complex systems where entities and
their interactions are represented as vertices and edges. One of the fundamental
notions in this field is that of domination, which deals with identifying a subset of
vertices that can ”control” or influence the entire graph. Specifically, a dominating
set is a set of vertices such that every vertex in the graph is either in this set or
adjacent to a vertex in it. This concept has numerous applications in areas like
network security, communication systems, and social networks.

As real-world systems often involve uncertainty and partial relationships, classical
graph models may not fully capture the nuances of such scenarios. This has led
to the development of fuzzy graph theory, introduced by Rosenfeld [8] in 1975,
which extends traditional graphs by allowing vertices and edges to have degrees
of membership in the interval [0,1]. These fuzzy graphs better model situations
where interactions are not purely binary, such as trust levels in social networks or
connection strength in sensor grids.

Within this fuzzy framework, the concept of domination has also been extended,
considering the degree of dominance based on fuzzy membership values. However,
while much work has been done on standard domination in fuzzy graphs, the concept
of inverse dominationwhich focuses on the maximum size of minimal dominating
setshas received limited attention.

A minimal dominating set in a fuzzy graph is one where no proper subset is
itself dominating, and the inverse domination number represents the largest size
among all such sets. This idea is particularly relevant in scenarios where distributed
control, redundancy, or influence maximization is important, but minimality (i.e.,
no unnecessary elements) must still be preserved.

This study aims to formalize and explore the notion of inverse domination in
fuzzy graphs, providing definitions, properties, and examples that bridge the gap
between classical domination theory and fuzzy systems. The insights gained from
this work may contribute to enhanced models for decision-making, information dis-
semination, and system resilience in uncertain environments. The concept of domi-
nation in graphs was introduced by Ore and Berge in 1962. The domination number
and independent domination number are introduced by Haynes and Hedetniemi
[11].Inverse domination in graphs was discussed by Kulli and Sigarkanti [12]. For
the terminology of domination and inverse domination in crisp graphs we refer to
[11, 12]. Nagoorgani and Chandrasekaran [7] introduced the concept of domination
using strong arcs in fuzzy graphs. In this paper, the concept of domination in fuzzy
graphs using strong arcs is taken from the paper [7], which is given as follows.

Definition 3.1 ([7]). A node v in a fuzzy graph G is said to be strongly dominate
itself, if each of its strong neighbors, i.e., v strongly dominates the nodes in Ni[v].
4
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A set D of nodes of G is a strong dominating set of G, if every node of V(G) — D is
a strong neighbor of some node in D.

Manjusha and Sunitha [13] defined strong domination number using membership
values (weights) of arcs in fuzzy graphs as follows.

Definition 3.2 ([13]). The weight of a strong dominating set D is defined as
W(D) = > ,epm(u,v), where p(u,v) is the minimum of the membership val-
ues(weights) of strong arcs incident on w. The strong domination number of a fuzzy
graph G is defined as the minimum weight of strong dominating sets of G and it is
denoted by 7(G) or simply ~v,. Aminimum strong dominating set in a fuzzy graph
G is a strong dominating set of minimum weight.

Let v5(G) or 75 denote the strong domination number of the complement of a
fuzzy graph G.
Now, we define inverse domination in fuzzy graphs using strong arcs as follows.

Definition 3.3. Let D ba a minimum strong dominating set of a fuzzy graph
G : (V,o,u). If V(G) — D contains a strong dominating set D* of G. then D= is
called a strong inverse dominating set of G with respect to D.

Definition 3.4. The weight of a strong inverse dominating set D is defined as
W(D) = > .cps#(u,v), where p(u,v) is the minimum of the membership val-
ues(weights) of strong arcs incident on u. The strong inverse domination number
of a fuzzy graph G is defined as the minimum weight of strong inverse dominating
sets of G and it is denoted by 74 (G) or simply vs;. A minimum strong inverse
dominating set in a fuzzy graph G is a strong inverse dominating set of minimum
weight.

Let 75;(G) or 75; denote the strong inverse domination number of the complement
of a fuzzy graph G.

Example 3.5. Consider the fuzzy graph in Figure 1. In this fuzzy graph, the
minimum strong dominating sets are D1 = {v,w} and Dy = {w,z} and the cor-
responding strong inverse dominating sets areD; = {u,z} and D} = {u,v}. Both
are minimum strong inverse dominating sets since W (D7) = 0.4 + 0.2 = 0.6 and
W(D3) = 0.440.2 = 0.6 Then the strong inverse domination number is ;; (G) = 0.6.
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u(0.9) 0.1 v(0.8)
@

0.4 0.2
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w(0.7) 0.3 x(0.6)

Figure 1: Example of a strong inverse dominating set

Proposition 3.6. The necessary and sufficient condition for the existence of at least
one strong inverse dominating set of G is that G contains no isolated nodes.

4. STRONG INVERSE DOMINATION NUMBER FOR CLASSES OF FUZZY GRAPHS

In this section, we have determined the strong inverse domination number of
complete fuzzy graphs, complete bipartite fuzzy graphs, fuzzy cycles, and the join
of a fuzzy graph with a complete fuzzy graph.

Proposition 4.1. If G: (V,o0,u) is a complete fuzzy graph, then
Y5i(G) = 75(G) = M p(u,v) : u,v € c*}.

Proof. Since G is a complete fuzzy graph, all arcs are strong [14] and each node is
adjacent to all other nodes. Hence, for any minimum strong dominating set D = {u},
its neighbor set N(u) is a complete fuzzy graph, and hence the result follows. O

Theorem 4.2. Let D be a minimum strong dominating set of G. If for every node
v € D, the induced fuzzy subgraph < Ng(v) > is a complete fuzzy graph of order at
least 2, then 74 (G) = v5(Q).

Proof. Let D = wuy,u9, - ,u, be a minimum strong dominating set of G. Let
V1,03, , U, be the nodes strongly adjacent to w1, us, - ,u, respectively. By the
assumption, for each node u; € D, the graph < Ng(u;) > is complete. Then
< Ns(u;) >C< Ng(v;) >. Thus V(G) = Ng(ui) U Ng(uz) U -+ U Ng(up) C
Ng(v1) U Ng(v2) U -+ U Ng(v,) = V(G). So vy,vg,- - ,v, is a minimum strong
inverse dominating set of G. Hence 7, (G) = vs(G). O

Proposition 4.3.
Va| p(u,v) if [Va| =1

’VSi(KtThUz) = |V1|/J(U,’U) Zf “/2| =1
2p(u,v) if Vil > 2 and |Va| > 2,

where p(u,v) is the weight of a weakest arc in Ky, o,
6
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Proof. In K4, 4,, all arcs are strong. Also each node in V; is adjacent with all nodes
in V5. Then in Ky, »,, the strong dominating sets are V;, V5 and any set containing
at least 2 nodes, one in V] and other in V5.

If V1 is a strong dominating set, then V5 is a strong inverse dominating set and
vice versa. Thus strong dominating sets and strong inverse dominating sets act
complementary. So Vs (Ks, 0,) = [Vi|p(u,v) if [Vo| =1 or |Va| p(u,v) if V4] = 1,
where p(u,v) is the minimum weight of arcs incident on w.

If both V; and V4 contain more than one element, then the set {u,v} of nodes
of any weakest arc (u,v) in K,, ,, forms a strong inverse dominating set. Thus
Voi(Koy,00) = p(u,v) + p(u, v) = 2p(u, v). So the result holds. O

Theorem 4.4. Let G : (V,o, ) be a fuzzy cycle where G* is a cycle. Then vs;(G) =
AN{W (D) : D is a strong inverse dominating set in G with|D| > [2]}, where n is
the number of nodes in G.

Proof. In a fuzzy cycle, every arc is strong. Also, the number of nodes in a strong
inverse dominating set of G and G* is the same because each arc in both graphs is
strong. In graph G*, the strong inverse domination number of G* is obtained as [ % |
[12]. Then the minimum number of nodes in a strong inverse dominating set of G
is [4]. Thus the result follows. O

Example 4.5. Consider the fuzzy cycle in Figure 2. In this fuzzy cycle, every arc
is strong. Hence any set containing any two nodes is a strong dominating set. Then
any set containing any two nodes is also a strong inverse dominating set. Thus the
result follows.

u(0.9) 0.2 v(0.8)
]

0.4 0.2
. ) o

w(0.7) 0.3 x(0.6)

Figure 2: Example of a strong inverse dominating set in a fuzzy cycle

Definition 4.6 ([7]). Two nodes in a fuzzy graph G : (V, o, 1) are said to be strongly
independent, if there is no strong arc between them. A set of nodes in G is strongly
independent if two nodes in the set are strongly independent.

7



O. T. Manjusha/Ann. Fuzzy Math. Inform. x (201ly), No. x, xx—xx

Definition 4.7 ([15]). The fuzzy weight of a strong independent set D in a fuzzy
graph G : (V,0, ) is defined as W(D) = »° . p p(u,v), where p(u,v) is the min-
imum of the membership values(weights) of strong arcs incident on u. The strong
independence number of a fuzzy graph G is defined as the maximum fuzzy weight of
strong independent sets of nodes in G and it is denoted by s, (G) or simply B,,. A
mazimum strong independent set in a fuzzy graph G is a strong independent set of
maximum fuzzy weight.

Theorem 4.8. For any fuzzy graph G : (V, o, n) without isolated nodes, 5 (G) <
Bs,(G). Equality holds if G = K.

Proof. Let D be a minimum strong dominating set of G. Let S be a maximal strong
independent set in V — D. Here, we consider two cases.

Case 1: Suppose V— D — S = ¢. Then V — D = S is a strong independent
inverse-dominating set of G. Thus 74,(G) < |V — D| p(u,v) = |S] p(u,v) < Bs,(G),
where p(u,v) is the weight of the weakest arc incident with w € V' — D.

Case 2: Suppose V — D — S # ¢. Then every node in V. — D — S is strongly
adjacent to at least one node in S. If every node in D is strongly adjacent to at
least one node in S, then S is a strong inverse dominating set of G. Otherwise, let
D' C D be a set of nodes in D such that no node of D! is strongly adjacent to the
nodes of S. Since D is a minimum strong dominating set, every node in D! must be
strongly adjacent to at least one node in VDS. Let S' C V — D — S, be such that
every node of D' is strongly adjacent to at least one node in S'. Clearly |Sl‘ - ’Dl’
and S U S! is strong inverse dominating set. Thus we have

76i(@) < [SU S julu,v) < |SUD! u(u,v) < s, (G).
Clearly, equality holds if G = K, . O

5. PRACTICAL APPLICATION

Greenhouse with Fuzzy Sensor Network: Imagine that you have a green-
house with 5 sensors placed in different places. Each sensor monitors temperature
and humidity and communicates with others. However, the signal strength (or in-
fluence) between sensors is not binary; it varies depending on obstacles, distance, or
interference. We represent this as a fuzzy graph:

Nodes = Sensors (51, S2, 53, 54, S5)

Arcs = Degree of influence or connectivity between sensors, ranging from 0 to 1.
Let us define the fuzzy adjacency matrix F' where F[i][j] = influence of node ¢ on
node j:

Si Sy S3 Sy Ss
S 1 7 3 0 0
Se 7 1 5 2 0
Ss 3 5 1 6 0
Se 0 2 6 1 .8
Ss 0 0 0 .8 1

This shows, for instance, that S; influences S; at 0.7 and S3 at 0.3. Lets say we
define a dominating threshold of 0.5. That is: A node is dominated if it is connected
8
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to at least one other node with influence > 0.5. We want to find the set of least
dominated nodes these are the ”inverse dominated” nodes.
Let us check each sensor:

Sp: Connected to Sy (0.7) strongly dominated,

Sy @ Connected to S (0.7), S (0.5) strongly dominated,

S3 @ Connected to Sz (0.5),54 (0.6) strongly dominated,

Sy : Connected to S3 (0.6),S5 (0.8) strongly dominated,

S5 : Only connected to Sy (0.8) strongly dominated.
That is, all nodes are strongly dominated in this case. Let’s change the threshold
to 0.6 to simulate weaker connections being insufficient. Now S — S3 = 0.5 Not
enough to strongly dominate:

S3 — S5 = 0.5 Not enough,

S3 — S, = 0.6 Barely dominated,

S1 — S9 = 0.7 Still good,

55 — S4 = 0.8 Good.
Then we get:

Sy: strongly dominated (via Ss ),

Sy : strongly dominated (via Si),

S3 : Not dominated,

Sy : strongly dominated (via Ss),

S5 : strongly dominated (via Sy).
This means sensor S3 is strongly inverse dominated no strong enough connections
(0.6) to other sensors. In practice, it may be poorly connected, at risk of data loss,
or a low-priority node. In this case, S3 could be Boosted with a signal repeater.
Removed or ignored if budget/power is limited. Flagged for manual inspection.

6. CONCLUSION

In this paper, we have introduced and explored the concept of inverse domination
in fuzzy graphs using strong arcs, extending classical domination theory to accom-
modate the graded relationships characteristic of fuzzy systems. By incorporating
strong arcs, we provide a more nuanced view of influence and connectivity, which is
essential for modeling real-world systems with uncertainty.

We have determined the strong inverse domination number for several classes of
fuzzy graphs, including complete fuzzy graphs, complete bipartite fuzzy graphs, and
fuzzy cycles. These results establish foundational benchmarks for further studies
and applications in fuzzy graph theory. Additionally, we have derived a significant
relation between the strong inverse domination number and the strong indepen-
dence number, highlighting structural connections that may inform both theoretical
analysis and algorithmic design.

Our methodological approach, based on adapting classical domination concepts
to the fuzzy setting with strong arcs, provides a flexible and powerful framework
for analyzing domination-related parameters in uncertain environments. By gener-
alizing existing graph invariants, we offer a new lens through which to understand
domination in systems that are not strictly binary or deterministic.

9
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To emphasize the practical significance of our findings, we presented a real-world
example illustrating how inverse domination in fuzzy graphs can be applied to influ-
ence modeling in uncertain decision-making or social systems. This example demon-
strates the relevance of our theoretical work to domains such as network resilience,
social influence analysis, and fuzzy control systems.

Overall, the results of this study open several promising directions for future
research, including the development of efficient algorithms for computing strong
inverse domination numbers in large-scale fuzzy networks, and extending the concept
to dynamic or weighted fuzzy graphs..
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